
WE3D-1

RADIAL MODE MATCHING ANALYSIS OF RIDGED
CIRCULAR WAVEGUIDE

Uma Balaji and Ruediger Vahldieck

Laboratory for Lightwave Electronics, Microwaves and Communication
(LLiMiC)

Dept. of Elec. &Comp. Engg., University of Victoria, Victoria, B. C., Canada V8W3P6

Abstract - Single ridged circular waveguides are
useful for the development of compact septum po-
larizers. The design of these structures is based
on the knowledge of modes in the semicircular and
ridged waveguide sections. In this paper a radial
mode matching analysis is presented to calculate
rigorously the TE and TM modes that are excited
in such a structure. Results are presented for varia-
tions of the ridge depth and ridge thickness and are
compared to results from a finite element analysis.

1 Introduction

Application of ridged rectangular and circular
waveguides can be found in many areas such as fil-
ters, mat thing circuits and polarizers. Recently, a
compact polarizer has been developed with semi-
circular waveguide [1], similar to the stepped sep-
tum polarizer in square waveguide technology [2,3].

The optimum design of stepped septum polariz-
ers requires the accurate calculation of the eigen-
values of the two orthogonal polarized modes for
various heights of the single ridge. Furthermore,
it is necessary to determine the onset of higher or-
der modes that can possibly couple with the funda-
mental modes, because unwanted coupling between
modes can significantly reduce port isolation. This
was demonstrated in [1], where the dominant modes
of the ridged circular waveguide have been calcu-
lated using the finite element method. In that work
no higher order modes have been investigated and it
was speculated that the moderate isolation between
the two input ports (-26dB) of the polarizer can
be attributed to coupling between the fundamen-
tal mode and TMO1 mode. Since the finite element
analysis is well known for spurious solutions, we

have developed a radial mode matching technique
to gain a better understanding of the behaviour of
the higher order modes in such a structure. As a
result of our analysis we have found that the third
TE mode is significantly reduced and may also con-
tribute to low isolation between both the polarizer
ports.

2 Theory

The eigenvalues of the orthogonal dominant modes
and higher order modes of the septum polarizer in
circular waveguide can be obtained from the solu-
tion of the Helmholtz equation in cylindrical co-
ordinates.

In order to avoid numerical problems in deal-
ing with structures of mixed coordinate system, the
ridge or septum is cut radially for a thickness of 20
[6]. This allows to bifurcate the structure into two
subregions for which the potential functions can be
written suitably. Using the separation of variables,
we can define kz = k: + k? and hence the potential
functions for regions 1 and 2 for TE modes, for the
case of magnetic wall along the line of symmetry in
Figure 1, can be written as follows

(2)@lJ = ~ A. J.(k.P) sin @
n=l

?J(2)= ~ Cm[H:2)’(kCa2)H:1 )(kCp)–
7n=l,3
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Figure 4: Cut-off characteristics of single ridged cir-
Figure 2: Single ridged Circular waveguide cular waveguide (t/D= O.04)

Figure 3: Double ridged Circular waveguide
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Figure 5: Cut-off characteristics of double ridged
circular waveguide
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3 Results

The eigenvalues for the fundamental mode of a sin-
gle ridged circular waveguide have been evaluated
using the above technique for the same dimensions
as in reference [1]. The results shown in Figure 4
are in good agreement, even for the case where the
ridge depth is larger than the radius of the circular
waveguide. Depending on the polarization of this
mode, the cutoff frequency either increases (hori-
zontal polarization, ew) or decreases (vertical polar-
ization, mw). The eigenvalues of some of the first
higher order modes, for two different ridge parame-
ters have been summarised in Table 1. It is clearly
seen that the cutoff frequency for the TE31 mode is
also significantly reduced by the ridge. The Jc/D
ratio of the TE31 mode changes from 0.75 for the
circular waveguide (al = a2) to 1.04 for the case of
al = O.9a2. At the same time the cutoff frequency
of TMo1 mode increases.

The variation of the ratio of the cutoff frequency
(TE1l) of double ridged circular waveguide to the
normal cutoff of the circular waveguide as a function
of the ridge parameter is shown in Figure 5 and
resembles the behaviour in a rectangular waveguide.
The detection of minimum singular values has been
used for the determination of the eigenvalues as in
[7]. It was found that N1 = 5 or 7 has been sufficient
to produce results of good accuracy.

4 Conclusions

The radial mode matching technique has been de-
veloped to analyze circular ridge waveguide struc-
tures. In comparison to the finite element analysis
the results are in good agreement for the fundamen-
tal mode. For the first time we have also presented
results for higher order modes. Furthermore, by
using conically shaped ridges, the problem of mix-
ing rectangular and circular discontinuities has been
avoided and all coupling integrals can be solved an-
alytically. This measure makes the mode matching
algorithm comput ationally very efficient.
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Figure 1: Single ridged Circular waveguide

Table. 1 (t/D= O.04)

Perturbed
mode pattern
TE1l
TE31
TE51
TE1.J
TE3LI
TMO1

AJD
h/D=O.05
1.7202
1.0446
0.7560
0.5896
0.4688
1.2887

Ae/D
h/D=O.25
1.9430
1.2019
0.8484
0.5943
0.4777
1.1943
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H[l)’(kca2)H\2) (kcp)]cos I(4 – 6’) (3)

where, 1 = &. The functions Jn are the Bessel

functions of order n and lfl are the Hankel functions
of order 1. The unknown coefficients of the eigen-
functions are An and Cm and a2 is the radius of the
circular waveguide.

The potential functions for the TM modes with a
magnetic wall along the line of symmetry in Figure
1 is given by

(4)IJ(lJ = ~ B..I.(ILP) cm n~
n=O

1$2) = ~ Dm[H\2)(kca2)H\ ’)(kcp)–
77G1,3

The potential functions for the TE modes with an
electric wall along the line of symmetry in Figure 1
is given by

4(1)=Swn(wcow+ (6)
n=O

I/@ = ~ cm[H[2)’(kca2)H$’)(k.p)-
Tn=o

(7)H[l)’(k.a2)H:2) (kcp)] cm ((4 – e)

where)~= *“
From the potential functions, the field compo-

nents in each of the region can be derived. Equating
E+ and 11, along the radius al for TE modes and E,
and H+ for TM modes, over qi appropriately, and
using orthogonality, a system of linear equations of
infinite size as a function of ke is obtained. The size
of the system of equations is made finite depending
on the truncation of the value of N1 and N2. The
ratio between N1 and N2 is chosen to be close to
the ratio of the angular widths of region 1 and re-
gion 2. The eigenvalue of the system, kc is obtained
either by searching for minimum singular value of
the characteristic equation or by searching the ze-
ros of the determinant. Since matrix singular value

decomposition offers more accurate and pole free so-
lutions [7], this technique has been chosen here for
evaluation of the eigenvalues.

Special Case 1: Ridge depth = Radius

The subregion 1 vanishes when the ridge depth is
equal to the radius of the circular waveguide. The
potential functions of the TE mode for this case is
similar to [4].

where, n = O 2r
~T&)~~J””””

The cutoff wavelength for the dominant and
higher order modes in this case has been ob-
tained from the search for the zeros of the function
J~(kcaz) as this makes E@= Ofor p = az.
Special Case 2: Ridge depth > Radius

When the ridge depth is greater than the radius of
the circular waveguide as in Figure 2, the potential
function for TE mode with magnetic wall along the
line of symmetry is the same as equation 3 for region
2, while for region 1 it is

@)= 54WCP)COS:!;;) (9)
n=O

where, q = —.(m%)
For the case of electric wall along the line of sym-

metry when the ridge depth is greater than the ra-
dius of the circular waveguide, the potential function
for the region 1 will be the same as equation 9 and
the potential function for region 2 will be the same
as equation 7.

Similarly, expressions for potential functions for
the TE modes of a double ridged circular waveguide
(Figure 3) can be written as below. With a magnetic
wall along the line of symmetry, the potential func-
tion for region 1 is the same as in equation 2, while
for region 2 it is

NC

@(’) = ~ Cm[Hf2)’(kcaz)Hfl) (kcp)-
m=o

(lo)H}l)’(kCa2)H\2) (kcp)] cos l(q$– 6’)

where> ~= (T’.%) “
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